

Available online at www.sciencedirect.com

Journal of Chromatography A, 1005 (2003) 131-141

JOURNAL OF CHROMATOGRAPHY A

www.elsevier.com/locate/chroma

Reduction of analysis time in gas chromatography Application of low-pressure gas chromatography-tandem mass spectrometry to the determination of pesticide residues in vegetables

F.J. Arrebola^a, J.L. Martínez Vidal^{a,*}, M.J. González-Rodríguez^a, A. Garrido-Frenich^a, N. Sánchez Morito^b

^aDepartment of Analytical Chemistry, University of Almería, 04071 Almería, Spain ^bLaboratory of Pesticide Residues C.U.A.M., Paraje "El Treinta", 5, 04700 El Ejido, Almería, Spain

Received 5 February 2003; received in revised form 12 May 2003; accepted 13 May 2003

Abstract

An alternative to conventional capillary gas chromatography (GC) is evaluated as a new approach to determine pesticide residues in vegetables. Low-pressure gas chromatography-tandem mass spectrometry (LP-GC-MS-MS) is proposed after a fast and simple extraction of the vegetable samples with dichloromethane and without clean up. The use of the above-mentioned GC technique reduced the total time required to determine 72 pesticides to less than half the present time (31 min), increasing the capability of a monitoring routine laboratory. The use of guard column and plug of carbofrit into the glass liner in combination with LP-GC was evaluated. The method was validated with limits of quantitation low enough to determine the pesticide residues at concentrations below the maximum residue levels stated by legislation. In order to assess its applicability to the analysis of real samples, 25 vegetable samples previously determined using conventional-capillary GC-MS-MS were analysed by LP-GC-MS-MS. The results obtained with the compared techniques showed differences lower than 0.01 mg kg⁻¹.

© 2003 Elsevier B.V. All rights reserved.

Keywords: Gas chromatography, low pressure; Gas chromatography, fast; Vegetables; Food analysis; Pesticides

1. Introduction

Currently, gas chromatography mass spectrometry (GC–MS) remains the main analytical technique used for pesticide residue analysis, combining the

power of separation allowed by GC, with the sensitivity, selectivity, and identification capability of MS [1–5]. In the few years, tandem MS (MS–MS) using bench top ion-trap systems has been shown to be a relevant approach in pesticide residue analysis, providing increased selectivity and sensitivity [6– 12]. However, one of the main goals in the development of new GC–MS methods is an increase in analysis speed to reduce the analysis time. The relatively slow multiresidue methods currently used

^{*}Corresponding author. Tel.: +34-950-015429; fax: +34-950-015483.

E-mail address: jlmartin@ual.es (J.L. Martínez Vidal).

in pesticide residue laboratories restrict the number of analyses per day.

Giddings [13] showed in 1962 that the application of a vacuum at the column outlet would lead to reduced analysis times in GC. He also proposed another approach based on GC at sub-atmospheric pressure or low pressure (LP). For many years this alternative was not practical due to the lack of adequate instrumentation. However, this is now possible by connecting a wide bore capillary column (0.53 mm I.D.) to a narrow and short restriction capillary that is positioned at the injector [14–16]. On the other hand, the use of MS detectors, which also require low pressure for analysis, can provide the vacuum for LP-GC, avoiding additional instrumentation. Recently, LP-GC has enabled short analysis times with the use of a short capillary column and MS-MS detection mode [17] in pesticide residue analysis.

The main aim of this study was to demonstrate the ability of a multiresidue and LP-GC-MS-MS method for the determination of pesticides in fresh vegetables by monitoring laboratories. This method is based on a simple and fast solvent extraction of the vegetables without post-extraction clean up steps before analysis. It has been validated and applied to the analysis of real samples of vegetables (tomato, cucumber and pepper extracts) from El Ejido (Almería), which is an important agricultural area in the southeast of Spain. The results obtained by this approach were compared to those obtained using conventional capillary columns and GC-MS-MS. A comparison of the analyses of real samples allowed us to determine the feasibility of LP-GC-MS-MS for the routine analysis of pesticide residues in vegetables, processing a higher number of samples daily, which is of great interest for a routine analysis laboratory.

2. Experimental

2.1. Chemicals and reagents

Pesticide standards and the internal standard (I.S.), caffeine, were obtained from Riedel-de-Haën (Seelze-Hannover, Germany); purity was always >99%. Pesticide-quality solvents (*n*-hexane, di-

chloromethane, methanol and acetone) were supplied by Panreac (Barcelona, Spain). Stock standard solutions (between 75 and 550 μ g ml⁻¹), prepared by exact weighing and dissolution in acetone, were stored in a freezer (-30 °C). Working standard solutions were prepared by appropriate dilution with cyclohexane and stored under refrigeration (4 °C). Anhydrous sodium sulfate for residue analysis was obtained from Panreac.

2.2. Apparatus

GC-MS analysis was performed with a Varian 3800 gas chromatograph with electronic flow control (EFC) and fitted with a Saturn 2000 ion-trap mass spectrometer (Varian Instruments, Sunnyvale, CA, USA). Samples were injected into a Varian 8200 autosampler SPI/1079 split/splitless programmedtemperature injector using a 100-µl syringe operated in the large volume injection technique. The glass liner was equipped with a plug of carbofrit (Resteck, Bellefonte, PA, USA). A fused-silica untreated capillary column 2 m×0.25 mm I.D. from Supelco (Bellefonte, PA, USA) was used as a guard column connected to a Rapid-MS [wall-coated open tubular (WCOT) fused-silica CP-Sil 8 CB low bleed of 10 m×0.53 mm I.D., 0.25 µm film thickness] analytical column from Varian Instruments (Sunnyvale, CA, USA) for high speed analysis. The mass spectrometer was operated in electron impact (EI) ionization mode. The computer that controlled the system also held an EI-MS-MS library specially created for the target analytes under our experimental conditions. Other EI-MS libraries were also available. The mass spectrometer was calibrated weekly with perfluorotributylamine. Helium (99.999%) at a flow-rate of 1 ml min⁻¹ was used as carrier and collision gas.

A chopper (Hamilton Beach, Washington, WA, USA), a Polytron PT2100 (Kinematica, Littan/Luzern, Switzerland), and a rotary evaporator R-114 (Büchi, Flawil, Switzerland) were available for processing samples.

2.3. Sample collection and storage

Fresh vegetables were sampled and transported following the 79/700/CEE directive. Pesticide free vegetables monitored by the laboratory of pesticide

Table 1 Retention time window (RTW) and GC-MS-MS conditions

Pesticide	RTW (min)	Parent ion	CID amplitude	CID	Quantification ion	Range
		(m/z)	(V)	$R_{\rm f}$	(m/z)	m/z
				(m/z)		
Dichlorvos	5.20-4.77	185	78	81	109+131	80-190
Acephate	5.12-5.06	136	37	47	107+119	80-190
Heptenophos	5.86-4.99	124	37	47	89	80-160
Propoxur	5.66-4.93	152	41	66	110	80-160
Ethoprophos	5.61-5.44	158	27	47	94+114+130	70-230
Dimethoate	6.75-5.52	125	55	60	79	70-230
Lindane	6.45-6.05	219	70	100	180	140-220
Pyremethanil	6.64-6.37	198	100	81	98	90-300
Chlorthalonil	6.81-6.37	266	90	85	133	90-300
Disulfoton	6.76-6.37	186	60	71	97	90-300
Etrimphos	6.76-6.63	292	45	70	181	90-300
Pirimicarb	7.04-6.75	166	49	53	83	80-200
Caffeine	7.07-6.81	194	56	60	120	80-200
Formothion	7.14-6.83	170	38	70	107	80-200
Ethiofencarb	7.04-6.75	168	39	63	107	80-200
Chlorpirifos-m	7.69-7.15	286	72	85	208	100-300
Vinclozoline	7.80-7.13	285	34	100	241-213	100-300
Parathion-m	7.68-7.04	263	48	80	136+216	100-300
Metalaxvl	7.61-7.44	206	54	75	132+162	100-300
Pirimiphos-m	7.99-7.78	290	64	85	151	90-300
Fenitrotion	8.04-7.73	260	65	71	122 + 138 + 170	90-300
Malathion	8.38-8.07	173	51	75	99	90-320
Chlorpyrifos	8.36-8.11	314	100	170	258	90-320
Fenthion	9.03-8.24	278	92	112	135	90-320
Triadimefon	8.73-8.40	208	62	75	144	90-345
Tetraconazole	9.12-8.61	336	96	108	218	90-345
Dicofol	9.01-8.23	250	49	90	215	90-345
Pendimethalin	9.26-9.01	252	62	95	$208 \pm 191 \pm 162$	90-345
Penconazole	9.72-9.20	248	77	89	192+157	90-300
Chlozolinate	10.01-9.32	331	88	145	259	90-300
Isonfenphos	9.71-9.29	213	52	93	185	90-300
Pvrifenox	9.89-9.11	263	90	100	192 + 228	90-300
Chlorfenvinphos	9.82-9.30	267	82	100	159	90-300
Procymidone	9.91-9.61	283	57	80	253:257	90-300
Ouinometionathe	10.42-9.72	234	60	83	196	69-250
Endosulfan α	10.32-9.79	241	84	80	170 ± 172	69-250
Fenaminphos	11.59-9.21	303	56	95	195	120 - 275
Fludioxinil	11.96 - 11.50	248	84	89	$152 \pm 154 \pm 127$	120 - 275
Buprofezin	12.14-11.22	249	50	80	191:195	120 - 275
Hexaconazole	12.43 - 12.03	231	100	100	159	120-275
Bupimirate	12.27-11.84	273	77	120	193	120-275
Endosulfan ß	12.50 - 11.98	241	84	80	170 + 172	120 - 275
Oxadixyl	13 58-12 62	163	46	71	132	100 - 235
Ethion	13.35-13.01	231	63	100	175+203	100-235
Benalaxyl	14 20-13 62	148	46	50	91	90-345
Carbofenothion	14 47-13 36	342	64	131	199+157	90-345
Endosulfan sulfate	14.21-13.58	272	64	80	235+238	90-345
Propiconazole	15.17-14.42	259	78	114	191 + 173	100-260
Nuarimol	15 94-14 30	235	56	75	139	100-260
Tebuconazole	15.94-14.78	250	63	75	125	100-260
Propargite	16.03–15.31	173	56	66	117+145	100-260

Pesticide	RTW (min)	Parent ion (m/z)	CID amplitude (V)	CID $R_{\rm f}$ (m/z)	Quantification ion (m/z)	Range m/z	
Iprodione	17.46-16.86	314	88	125	245+271	140-345	
Bromopropylate	17.53-16.65	341	45	70	181:187	140-345	
Bifenthrin	18.22-17.18	181	40	50	165	140-275	
Fenpropathrin	18.26-17.66	265	72	95	210	140-275	
Tetradifon	18.30-17.84	229	95	100	197:203	140-275	
Furathiocarb	19.27-18.28	325	77	140	194	100-330	
Phosalone	19.26-17.85	182	70	80	111+138	100-330	
Piriproxifen	19.77-19.09	136	57	59	96	70-140	
Cyhalothrin	21.38-19.65	181	90	80	152	120-290	
Amitraz	21.22-19.66	162	50	71	132+147	120-290	
Pirazofos	21.32-20.19	265	87	120	210	120-290	
Acrinathrin	22.30-20.30	181	87	80	152	70-200	
Permethrin	23.66-21.73	183	74	70	152	70-200	
Pyridaben	22.85-20.45	147	53	64	111 + 105	70-200	
Cyfluthrin	25.74-24.11	206	96	86	149:152	100-325	
Cypermethrin	26.30-24.96	163	53	70	127	100-325	
Flucythrinate	27.46-25.04	157	69	79	107	100-325	
Esfenvalerate	26.85-25.96	225	51	70	119	100-325	
Difenoconazole	29.66-28.09	323	87	122	265	100-325	
Deltramethrin	30.79-29.05	253	57	90	172+174	120-350	
Azoxistrobina	30.96-29.96	345	92	115	329	120-350	

Table 1. Continued

residues CUAM (El Ejido, Almería, Spain) were used as blank to spike samples for recovery studies and to prepare matrix matched standards for calibration. Samples were analysed in 24 h and preserved at 4 °C until the extraction time. No degradation of the pesticides was detected in the storage conditions.

2.4. Extraction procedure of pesticides from the vegetables

A 2-kg sample of vegetable was chopped and homogenised. An aliquot of 15 g was exactly weighted into a glass and mixed with 50 ml of dichloromethane in the Polytron for 2 min and 50 g of anhydrous sodium sulfate was added. The mixture was allowed to rest for 2 min and then filtered through a 9-cm Büchner funnel and filtered again through paper filter with anhydrous sodium sulfate to a spherical flask. Evaporation of the solvent to dryness was done in a rotary evaporator (35–40 °C). The dried residue was re-dissolved with 5 ml of cyclohexane. One millilitre of this solution was added to a 2-ml volumetric flask with 50 μ l of I.S. solution of 20 mg l^{-1} . The final 2-ml volume was attained using cyclohexane.

2.5. Instrumental conditions

Sample aliquots of 10 μ l were injected into the GC operating at a syringe injection flow-rate of 10 μ l s⁻¹. The initial injector temperature of 70 °C was held for 0.5 min and then increased at 100 °C min⁻¹ to 310 °C, which was held for 10 min. After injection the column temperature, initially 70 °C, was held for 3.5 min, then increased at 50 °C min⁻¹ to 150 °C, then increased at 3 °C min⁻¹ to 235°C and finally raised to 300 °C at 50 °C min⁻¹ and held for 3 min.

The ion-trap mass spectrometer was operated in EI-MS–MS mode. The transfer line, manifold and trap temperatures were 280, 50 and 200 °C, respectively. The analysis was performed with a filament-multiplier delay of 4.75 min to prevent instrument damage. The automatic gain control (AGC) was activated with an AGC-target of 5000 counts. The emission current for the ionisation filament was set at 80 μ A, generating electrons with an energy of 70 eV. The axial modulation amplitude voltage was 4.0 V.

Fig. 1. LP-GC-MS-MS chromatogram obtained using (a) and without using (b) carbofrit of *cis*- and *trans*-flucythrinate pesticide.

The MS–MS process was carried out by collisioninduced dissociation (CID) with a non-resonant excitation for all the compounds studied. The electron multiplier voltage was 1700 V (+200 V offset above the auto-tuning process). Scan rate and mass range scanned depended on the number of pesticides analysed simultaneously. The specific MS–MS parameters used are shown in Table 1.

3. Results and discussion

3.1. Injection step

No special techniques for injection of samples are required with LP-GC because, despite the fact that the analytical column has to be kept under low pressure conditions, the injector works at conventional column head pressures. As a consequence, typical injection volumes can be used and the sample capacity is not limited. In this study, a large volume injection technique [11] was used in order to increase sensitivity and check the sample capacity of the analytical column proposed. The injection volume set (10 μ l) allowed the determination of pesticide residues at concentrations below or equal to the maximum residue levels (MRLs) with a good peak shape. The injection of larger volumes would involve

Fig. 2. (a) Endosulfan α chromatogram of a positive sample of tomato (concentration found, 0.015 mg kg⁻¹) and MS–MS spectra obtained for the sample (b) and library (c).

the application of a previous clean-up step to the analytical detection and an increment of the maintenance of the instrument. In addition, the injection of volumes much higher than 10 µl would not involve a significant improvement in the signal to noise ratio because of the saturation of the injector and analytical column with the components of the sample [1]. In this sense, it is important to note that the use of both a precolumn (or guard column) of conventional diameter, and a plug of carbofrit in the injection-port liner for the analysis of the complex sample extracts is favourable for eliminating matrix interferences, and consequently, it avoids the application of clean-up procedures [6,7]. On the other hand, the absence of carry over effect was tested injecting solvent after analysis of highly concentrated standards. This can be attributed to the final injector temperature (310 °C), and the further vent program. Additionally, the use of the above mentioned plug improves the deposit of the drop of sample introduced by the syringe, and the volatilisation process increases the sensitivity of the method. Fig. 1 shows the increment of sensitivity achieved when a plug of carbofrit is used.

3.2. Gas chromatographic separation of the pesticides

The oven temperature program applied was similar to that previously developed in our laboratory [17]. However, the use of a guard column or the use of carbofrit did not significantly affect the retention time and resolution of the pesticides, as well as the function of the restriction connected to the analytical column. All compounds were eluted in a reasonably short time (less than 31 min), as shown in Fig. 2. The use of LP-GC reduced at least to half the total time required using conventional capillary GC [6–8,10], and as a result, can double the number of samples analysed per day in a routine laboratory.

3.3. Extraction of the pesticides

The extraction procedure prior to the instrumental determination is an important factor. The extract obtained should not jeopardise the injector, column or detector systems. However, the low concentrations of the pesticides in foodstuffs require concentrating

the extracts with the corresponding increment of the target analyte and interference signals. In this sense, expensive and time-consuming clean-up steps are recommended [18-22]. For MS-based methods there is a tendency to omit the clean-up step, especially when MS-MS is used [6,7]. However, the use of previous clean-up steps increases the time between instrumental maintenance. A simple method with dichloromethane is proposed as an extraction procedure based on the capability of this solvent to extract substances with a wide range of polarities. It obviously also includes more matrix interferences but they can be minimised using a plug of carbofrit into the glass liner and a guard column. In this way, the tedious clean-up step can be avoided. The method was partially miniaturised in order to reduce the amount of dichloromethane used (environmental impact of chlorinated solvents) [6,7]. Despite the absence of clean-up, additional maintenance of the LP-GC column was not necessary, demonstrating the reliability of the proposed chromatographic technique.

3.4. Optimisation of the MS-MS parameters

The MS–MS process involves two fundamental steps between the formation and detection of ions. In the first step the precursor ion or an entire cluster of parent ions is isolated in the trap, and in the second stage the dissociation of the precursor ion or ions is performed by collisional activation with an inert gas. Usually, the most intense parent ions are selected, but when those ions have low mass it may be better to select a slightly less intense ion at a higher mass. After this choice it is necessary to set the excitation storage level [12] before optimising the CID step.

For the last task the instrument software has a procedure known as automated method development (AMD) that allows us to perform this work with a few injections. The main parameters involved in this process are the excitation amplitude (or resonance excitation voltage) and the excitation storage level. The final values used in this study are summarised in Table 1. The excitation time was set constant at 20 ms.

Once the MS-MS conditions were optimised, the quantitation ions were selected. The MS-MS spectra

Table 2							
Accuracy a	and precision	at two	concentration	levels of	the	LP-GC-MS-MS met	hod

Pesticide 1st Cal. level				2nd Cal. lev	el	LOD	LOQ	
	Conc. (mg kg ^{-1})	Recovery (%)	RSD (%)	Conc. (mg kg ^{-1})	Recovery (%)	RSD (%)	(µg kg)	(µg kg)
Dichlorvos	0.050	71.2	25.5	0.250	87.3	9.0	1.0	3.5
Acephate	0.020	73.8	7.9	0.100	80.5	7.3	4.0	13.0
Heptenophos	0.010	85.3	8.9	0.050	103.3	14.6	0.1	0.5
Propoxur	0.050	83.5	16.9	0.250	110.7	15.7	1.1	3.6
Ethoprophos	0.010	70.3	13.4	0.050	115.3	12.7	0.2	0.8
Dimethoate	0.020	89.7	16.5	0.100	114.3	12.4	2.7	8.9
Lindane	0.100	71.8	13.5	0.500	82.5	11.4	0.3	1.0
Pyremethanil	0.020	115.6	12.2	0.100	112.3	11.2	0.6	1.9
Chlorthalonil	0.100	87.2	14.6	0.500	83.6	14.0	1.9	6.4
Disulfoton	0.020	78.2	13.1	0.100	77.3	14.5	10.0	22.0
Etrimphos	0.010	76.7	14.0	0.050	111.3	10.5	0.1	0.2
Pirimicarb	0.020	76.7	14.1	0.100	78.5	8.0	0.5	1.7
Caffeine	_	_	_	_	_	_	-	-
Formothion	0.050	74.6	14.3	0.250	112.7	8.1	3.8	12.8
Ethiofencarb	0.020	118.2	10.3	0.100	73.3	12.8	2.2	7.4
Chlorpirifos methyl	0.020	95.0	14.7	0.100	88.3	13.1	0.1	0.8
Vinclozoline	0.050	73.0	13.2	0.250	70.4	14.5	0.1	0.2
Parathion methyl	0.100	97.9	14.3	0.500	120.0	12.3	2.6	8.7
Metalaxyl	0.050	74.4	4.7	0.250	111.6	9.3	0.2	0.8
Pirimiphos met	0.010	73.3	5.0	0.050	108.0	8.6	0.1	0.2
Fenitrotion	0.100	100.8	9.6	0.500	102.0	14.0	0.3	1.0
Malathion	0.100	112.8	9.4	0.500	70.6	7.8	0.7	2.3
Chlorpyrifos	0.020	82.4	5.6	0.100	118.3	7.7	0.1	0.5
Fenthion	0.020	109.0	10.8	0.100	112.0	7.8	0.2	0.6
Triadimefon	0.050	115.6	7.5	0.250	116.0	10.0	0.8	2.7
Tetraconazole	0.010	71.2	9.5	0.050	85.0	9.7	0.1	0.2
Dicofol	0.020	119.8	9.8	0.100	73.3	8.2	0.2	0.8
Pendimethalin	0.020	78.2	9.2	0.100	106.7	9.2	0.1	0.2
Penconazole	0.010	97.4	15.3	0.050	77.3	12.4	0.1	0.2
Chlozolinate	0.020	87.4	12.5	0.100	94.3	11.3	0.3	0.8
Isonfenphos	0.010	100.8	9.5	0.050	100.0	9.2	0.2	0.6
Pyrifenox	0.050	106.7	8.3	0.250	90.9	13.4	0.2	0.7
Chlorfenvinphos	0.050	81.5	9.2	0.250	108.7	9.3	0.1	0.4
Procymidone	0.100	117.5	11.4	0.500	116.0	10.8	0.5	1.7
Quinometionathe	0.020	109.0	10.6	0.100	96.7	9.9	0.1	0.5
Endosulfan α	0.025	90.3	6.6	0.125	104.5	10.1	0.2	0.7
Fenaminphos	0.020	78.0	13.6	0.100	89.5	9.5	0.1	0.2
Fludioxinil	0.020	105.4	14.7	0.100	104.7	8.8	0.2	0.5
Buprofezin	0.010	85.8	7.0	0.050	110.0	9.4	0.1	0.4
Hexaconazole	0.010	71.8	11.3	0.050	104.0	10.4	0.1	0.3
Bupimirate	0.010	115.2	12.5	0.050	106.0	9.2	0.1	0.2
Endosulfan β	0.025	76.7	13.2	0.125	114.1	5.7	0.5	2.7
Oxadixyl	0.050	72.5	15.3	0.250	111.1	7.2	0.1	0.3
Ethion	0.020	74.4	13.1	0.100	109.7	8.9	0.1	0.2
Benalaxyl	0.050	82.1	8.8	0.250	87.3	7.6	0.2	0.8
Carbofenothion	0.010	97.4	12.7	0.050	113.2	10.2	0.1	0.3
Endosulfan sulfate	0.025	79.6	11.1	0.125	92.3	14.0	0.3	1.0
Propiconazole	0.020	126.9	11.6	0.100	115.3	9.6	0.1	0.4

Table 2.	Continued
----------	-----------

Pesticide	1st Cal. leve	1		2nd Cal. leve	el	LOD $(\mu\sigma k\sigma^{-1})$	LOQ $(\mu g k g^{-1})$	
	Conc. $(mg kg^{-1})$	Recovery (%)	RSD (%)	Conc. $(mg kg^{-1})$	Recovery (%)	RSD (%)	(~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Nuarimol	0.010	92.8	10.7	0.050	112.7	6.5	0.2	0.7
Tebuconazole	0.020	79.5	16.4	0.100	110.0	8.3	0.5	1.5
Propargite	0.050	128.5	11.5	0.250	122.0	14.6	1.8	7.7
Iprodione	0.100	80.4	7.9	0.500	118.7	13.5	0.1	0.2
Bromopropylate	0.100	66.7	5.9	0.500	113.3	5.4	0.1	0.2
Bifenthrin	0.010	107.7	8.1	0.050	117.3	8.4	0.1	0.2
Fenpropathrin	0.020	107.7	11.6	0.100	90.3	7.9	0.1	0.2
Tetradifon	0.050	102.6	12.2	0.250	86.7	10.0	0.1	0.3
Furathiocarb	0.050	72.3	13.9	0.250	111.2	7.1	0.1	0.2
Phosalone	0.100	105.1	7.4	0.500	101.3	11.3	0.1	0.3
Piriproxifen	0.010	110.3	11.8	0.050	105.3	19.7	0.1	0.2
Cyhalothrin	0.050	92.3	7.9	0.250	106.7	7.7	0.1	0.3
Amitraz	0.020	128.2	14.0	0.100	87.6	10.2	0.1	0.4
Pirazofos	0.010	91.9	9.1	0.050	104.0	5.1	0.1	0.2
Acrinathrin	0.010	95.4	15.0	0.050	71.3	12.3	0.2	0.8
Permethrin	0.050	89.7	7.7	0.250	119.3	10.3	0.6	2.0
Pyridaben	0.010	71.8	9.9	0.050	119.3	7.2	0.1	0.3
Cyfluthrin	0.020	89.7	9.7	0.100	110.0	11.1	0.6	2.2
Cypermethrin	0.100	83.3	10.6	0.500	113.3	10.1	0.7	2.5
Flucythrinate	0.020	96.9	13.5	0.100	114.1	12.4	0.3	0.9
Esfenvalerate	0.020	88.5	11.1	0.100	123.3	10.6	0.3	1.1
Difenoconazole	0.010	82.1	9.0	0.050	92.2	11.8	0.1	0.2
Deltramethrin	0.050	105.1	9.2	0.250	118.7	10.6	0.1	1.2
Azoxistrobina	0.050	76.9	7.2	0.250	70.7	12.5	0.1	0.4

obtained in the final experimental conditions were stored in our own-made MS-MS library.

3.5. Validation of the method

In order to check the feasibility of the LP-GC method for the analysis of pesticide residues in fresh vegetable sample extracts, it was validated using cucumber extracts. Cucumber was selected as a representative commodity for the validation of the method for the determination of pesticide residues in matrices of high water content, like the ones studied here, according to the SANCO guide [23].

3.5.1. Identification and confirmation of target analytes

The identification of the pesticides was based on the retention time windows (RTW) that are defined as the retention time average ± 3 S.D.s of the retention time when 10 blank samples spiked at the second calibration level of each compound were analysed. The confirmation of a previously identified compound was done by comparing the MS–MS spectra obtained in the sample with another stored as reference spectrum in the same experimental conditions. The reference spectra were obtained daily by injecting a blank cucumber sample spiked at the concentration of the second calibration point.

3.5.2. Quantitation of target analytes

3.5.2.1. Limit of detection (LOD) and limit of quantitation (LOQ)

LOD and LOQ values were calculated through the definition based on the standard deviation of the signal of the blank (in our study, blank cucumber extracts) injections following IUPAC recommendations [24]. LOD values ranging from 0.02 to 4 μ g kg⁻¹ and LOQ ranging from 0.06 to 13 μ g kg⁻¹ were obtained (Table 3). The exception was disulfoton, which showed higher LOD and LOQ values (10 and 22 μ g kg⁻¹, respectively)

3.5.2.2. Linearity

The linearity of the method was determined by injecting 10 µl of spiked blank matrix extracts. Linear calibration graphs were constructed by leastsquares regression of concentration versus peak area and height ratio (analyte/I.S.) of the calibration standards. Slightly better results were achieved using relative areas for all compounds. Table 2 summarises the slopes, intercepts and correlation coefficient values for the validation study. Good linearity was found in the concentration range studied, with correlation coefficients between 0.97 and 0.99. For all compounds, the first point of the calibration curve was set at a concentration between the LOQ and the smallest MRL found for the vegetables studied and the different EU legislation. In cases like acephate, when the LOQ was not much lower than minimum MRL, the first calibration point was the MRL. On the other hand, for all pesticides, the highest calibration concentration was set to 15 times the first calibration concentration.

3.5.2.3. Accuracy and precision

Recovery efficiency data were obtained by analysing uncontaminated cucumber extracts (n=10) spiked at two different concentration levels (Table 3). Recoveries higher than 70.0% were obtained for all pesticides. We assumed, as a criterion for validation of the compounds, recoveries between 70 and 130%. These values indicated acceptable recovery for the assay procedure. The precision (repeatability, n=10) of the overall method was also evaluated at two concentration levels, and expressed as relative standard deviation (RSD). Table 3 shows the results with RSD values lower than 17% for all pesticides, except for dichlorvos (25.5%) at the lower spiking level.

3.6. Application to the analysis of real samples

In order to test the feasibility of the LP-GC-MS-MS approach for routine analysis of pesticide residues in real samples and to compare it with conven-

Table 3

Results obtained (mg kg⁻¹) in the analysis of tomato (T) samples by LP-GC and conventional GC (values in parenthesis)

Pesticide	T1	T2	T3	T4	T5	T6	T7	T8	T9	T10	T11
Endosulfan α	0.015										
Chlorothalonil	0.058	0.033 (0.075)	0.113 (0.173)		0.090 (0.090)					0.141 (0.127)	0.878 (0.878)
Iprodione	0.129	0.095	(00000)		(0.07.0)	0.176 (0.150)				()	()
Buprofezin	0.001 (0.029)	()				0.009					
Procimidone	(,			0.318 (0.317)		(0.454 (0.434)
Oxadixyl				~ /	0.012 (0.011)			0.050 (0.048)		0.024 (0.027)	0.014 (0.018)
Pirimiphos-m						0.051 (0.042)	0.050 (0.048)	((
Tebuconazole						(0.0.1_)	(0.0.0)	0.093 (0.079)			0.018 (0.017)
Piriproxifen								(00077)			0.019
Fludioxinil									0.035 (0.034)		(0.01.)
Bifenthrin									0.017		
Metalaxyl									(0.011)	0.037 (0.038)	

Table 4				
Results obtained (mg kg-	¹) in the analysis of cucumber (C) an	d pepper (P) samples by LP-GC	and conventional GC	(values in parenthesis)

Pesticide	C1	C2	C3	C4	P1	P2	P3	P4	Р5	P6	P7	P8	P9	P10
Endosulfan α	0.049 (0.041)	0.015 (0.013)		0.009 (0.001)	0.064 (0.051)	0.003 (0.015)		0.012 (0.020)	0.015 (0.013)			0.022 (0.022)		
Endosulfan β				0.019 (0.007)				0.032 (0.025)	0.018 (0.019)			0.031 (0.024)		
Endosulfan sulfate	0.027 (0.036)							0.026 (0.026)						
Acrinathrin			0.032 (0.023)			0.006	0.006							
Permethrin			0.318 (0.317)											
Chlorothalonil			0.033	0.012										
Iprodione			(0.000)	(000,00)			0.077 (0.125)			0.109	0.109			
Procymidone							(0.122)			(0.000)	0.086	0.076		0.136
Buprofezin						0.002			0.003		(0.07.0)	(0.07.0)		(00000)
Piridaben						(0.002)	0.016	0.011	(0.005)		0.001			
Pirimiphos-m						0.010	(0.015)	0.107			(0.005)	0.007		
Tebuconazole						0.032		(0.110)				(0.011)		0.007
Fludioxinil						0.007				0.002		0.027		(0.015)
Bifenthrin						(0.012)		0.007		0.011		(0.055)		
Fenpropatrin								(0.012)		(0.012)		0.025		
Cypermethrin												0.025)		
Pyremethanil												(0.064) 0.005		
Nuarimol												(0.017)	0.037	
													(0.055)	

tional GC–MS–MS, 25 samples of vegetables (cucumber, tomato and pepper) were analysed for the target compounds. All samples came from CUAM laboratory located in Almería, where they were previously analysed by GC–MS–MS with positive residues (a total of 70 positive residues). Tables 3 and 4 summarise the results obtained by both approaches. The same positive pesticide residues were detected in the samples by LP-GC. Endosulfan α (36%), chlorothalonil (32%), iprodione (26%) and procymidone (20%) occurred more frequently followed by endosulfan β , buprofezin, oxadixil, bifentrin and tebuconazol (16%), pirimifos methyl, acrinathrin and fluodixil (12%), and finally, endosulfan sulfate, metalaxyl, nuarimol, fenpropathrin, pyriproxifen, permethrin and cypermethrin (4%). The rest of the target pesticides were not found in any of the analysed samples. Only one of the positive residues exceeded the EU regulation, and specifically for the acrinathrin pesticide, by the two methods.

In general, differences lower than 0.01 mg kg⁻¹ were obtained. A higher disagreement was obtained for the chlorothalonil pesticide, which always showed lower values by LP-GC. However, in any case the chlorothalonil residues detected exceeded the MRLs.

4. Conclusions

A multiresidue method by LP-GC–MS–MS has been validated for the determination of pesticides in fresh vegetable samples. The introduction of a precolumn and carbofrit in the chromatographic system did not show any problem in LP-GC, and in addition avoided the application of previous clean-up steps to the complex extracts. The effectiveness of this approach for routine analysis was evaluated by its application to real samples that had been previously analysed by GC–MS–MS. The excellent agreement between the results demonstrates the applicability of the LP-GC–MS–MS to routine analysis.

In future, the application of LP-GC-MS-MS methods, as described in this paper, will change conventional capillary GC-MS-MS methods in monitoring laboratories. Analysis that in the past needed more than 1 h might now be performed in half that time with this approach.

Acknowledgements

The authors are grateful to Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) (Project CAL00-064) and FIAPA (Ce.-486/ 01) for financial support.

References

 A. Agüera, L. Piedra, M.D. Hernando, A.R. Fernández-Alba, M. Contreras, Analyst 125 (2000) 1397.

- [2] J. Fillion, F. Sauvé, J. Selwyn, J. AOAC Int. 83 (2000) 698.
- [3] S.J. Lehotay, K.I. Eller, J. AOAC Int. 78 (1995) 821.
- [4] J. Fillion, R. Hindle, M. Lacroix, J. Selwyn, J. AOAC Int. 78 (1995) 1252.
- [5] A. Valverde García, E. González Pradas, A. Aguilera del Real, M.D. Ureña Amate, Anal. Chim. Acta 276 (1995) 15.
- [6] J.L. Martínez Vidal, F.J. Arrebola, M. Mateu-Sánchez, Rapid Commun. Mass Spectrom. 16 (2002) 1106.
- [7] J.L. Martínez Vidal, F.J. Arrebola, M. Mateu-Sánchez, J. Chromatogr. A 959 (2002) 203.
- [8] M. Gamon, C. Lleó, A. Ten, F. Mocholí, J. AOAC Int. 84 (2001) 1209.
- [9] S.J. Lehotay, J. AOAC Int. 83 (2000) 680.
- [10] R.S. Sheridan, J.R. Meola, J. AOAC Int. 82 (1999) 982.
- [11] R.J.C.A. Steen, I.L. Freriks, W.P. Cofina, U.A.Th. Brinkman, Anal. Chim. Acta 353 (1997) 153.
- [12] S. Schachterle, C. Feigel, J. Chromatogr. A 754 (1996) 411.
- [13] J.C. Giddings, Anal. Chem. 34 (1962) 314.
- [14] K. Mastovská, S.J. Lehotay, J. Hajslová, J. Chromatogr. A 926 (2001) 291.
- [15] J. de Zeeuw, J. Peene, H.-G. Janssen, X. Lou, J. High Resolut. Chromatogr. 23 (2000) 677.
- [16] M.M. van Deursen, H.G. Janssen, J. Beens, P. Lipman, R. Reinierkens, G. Rytten et al., J. Microcol. Sep. 12 (2000) 613.
- [17] M.J. González Rodríguez, A. Garrido Frenich, F.J. Arrebola Liébanas, J.L. Martínez Vidal, Rapid Comum. Mass Spectrom. 16 (2002) 1216.
- [18] F. Schenck, L. Calderon, D. Saudarg, J. AOAC Int. 79 (1996) 1454.
- [19] G. Pang, Y. Chao, C. Fan, J. Zhang, Y. Lie, T. Zhao, J. AOAC Int. 78 (1995) 1481.
- [20] L.G.M.Th. Tuinstra, F.R. Povel, A.H. Roos, J. Chromatogr. 552 (1991) 365.
- [21] W. Specht, M. Tillkes, Fresenius J. Anal. Chem. 322 (1985) 443.
- [22] H. Rosenboom, H. Herbold, J. Chromatogr. 202 (1980) 431.
- [23] SANCO/825/00 rev.6, Guidance Document on Residue Analytical Methods, European Comisión, 2000.
- [24] L.C. Currie, Anal. Chim. Acta 391 (1999) 105.